59 research outputs found

    Thermal-Infrared Remote Target Detection System for Maritime Rescue based on Data Augmentation with 3D Synthetic Data

    Full text link
    This paper proposes a thermal-infrared (TIR) remote target detection system for maritime rescue using deep learning and data augmentation. We established a self-collected TIR dataset consisting of multiple scenes imitating human rescue situations using a TIR camera (FLIR). Additionally, to address dataset scarcity and improve model robustness, a synthetic dataset from a 3D game (ARMA3) to augment the data is further collected. However, a significant domain gap exists between synthetic TIR and real TIR images. Hence, a proper domain adaptation algorithm is essential to overcome the gap. Therefore, we suggest a domain adaptation algorithm in a target-background separated manner from 3D game-to-real, based on a generative model, to address this issue. Furthermore, a segmentation network with fixed-weight kernels at the head is proposed to improve the signal-to-noise ratio (SNR) and provide weak attention, as remote TIR targets inherently suffer from unclear boundaries. Experiment results reveal that the network trained on augmented data consisting of translated synthetic and real TIR data outperforms that trained on only real TIR data by a large margin. Furthermore, the proposed segmentation model surpasses the performance of state-of-the-art segmentation methods.Comment: 12 page

    Automatic Internal Stray Light Calibration of AMCW Coaxial Scanning LiDAR Using GMM and PSO

    Full text link
    In this paper, an automatic calibration algorithm is proposed to reduce the depth error caused by internal stray light in amplitude-modulated continuous wave (AMCW) coaxial scanning light detection and ranging (LiDAR). Assuming that the internal stray light generated in the process of emitting laser is static, the amplitude and phase delay of internal stray light are estimated using the Gaussian mixture model (GMM) and particle swarm optimization (PSO). Specifically, the pixel positions in a raw signal amplitude map of calibration checkboard are segmented by GMM with two clusters considering the dark and bright image pattern. The loss function is then defined as L1-norm of difference between mean depths of two amplitude-segmented clusters. To avoid overfitting at a specific distance in PSO process, the calibration check board is actually measured at multiple distances and the average of corresponding L1 loss functions is chosen as the actual loss. Such loss is minimized by PSO to find the two optimal target parameters: the amplitude and phase delay of internal stray light. According to the validation of the proposed algorithm, the original loss is reduced from tens of centimeters to 3.2 mm when the measured distances of the calibration checkboard are between 1 m and 4 m. This accurate calibration performance is also maintained in geometrically complex measured scene. The proposed internal stray light calibration algorithm in this paper can be used for any type of AMCW coaxial scanning LiDAR regardless of its optical characteristics

    Highly precise AMCW time-of-flight scanning sensor based on digital-parallel demodulation

    Full text link
    In this paper, a novel amplitude-modulated continuous wave (AMCW) time-of-flight (ToF) scanning sensor based on digital-parallel demodulation is proposed and demonstrated in the aspect of distance measurement precision. Since digital-parallel demodulation utilizes a high-amplitude demodulation signal with zero-offset, the proposed sensor platform can maintain extremely high demodulation contrast. Meanwhile, as all cross correlated samples are calculated in parallel and in extremely short integration time, the proposed sensor platform can utilize a 2D laser scanning structure with a single photo detector, maintaining a moderate frame rate. This optical structure can increase the received optical SNR and remove the crosstalk of image pixel array. Based on these measurement properties, the proposed AMCW ToF scanning sensor shows highly precise 3D depth measurement performance. In this study, this precise measurement performance is explained in detail. Additionally, the actual measurement performance of the proposed sensor platform is experimentally validated under various conditions

    Switching of Slow Magnetic Relaxation Dynamics in Mononuclear Dysprosium(III) Compounds with Charge Density

    Get PDF
    The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increasing the relaxation time by over 3 orders of magnitude at 3.5 K.FP7-ERC-247384ERC-2014-CoG/ 647301MAT2014-56143-RCTQ2014-52758-PMDM-2015-0538The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increasing the relaxation time by over 3 orders of magnitude at 3.5 K

    A Prediction Rule to Identify Severe Cases among Adult Patients Hospitalized with Pandemic Influenza A (H1N1) 2009

    Get PDF
    The purpose of this study was to establish a prediction rule for severe illness in adult patients hospitalized with pandemic influenza A (H1N1) 2009. At the time of initial presentation, the baseline characteristics of those with severe illness (i.e., admission to intensive care unit, mechanical ventilation, or death) were compared to those of patients with non-severe illnesses. A total of 709 adults hospitalized with pandemic influenza A (H1N1) 2009 were included: 75 severe and 634 non-severe cases. The multivariate analysis demonstrated that altered mental status, hypoxia (PaO2/FiO2 ≤ 250), bilateral lung infiltration, and old age (≥ 65 yr) were independent risk factors for severe cases (all P < 0.001). The area under the ROC curve (0.834 [95% CI, 0.778-0.890]) of the number of risk factors were not significantly different with that of APACHE II score (0.840 [95% CI, 0.790-0.891]) (P = 0.496). The presence of ≥ 2 risk factors had a higher sensitivity, specificity, positive predictive value and negative predictive value than an APACHE II score of ≥ 13. As a prediction rule, the presence of ≥ 2 these risk factors is a powerful and easy-to-use predictor of the severity in adult patients hospitalized with pandemic influenza A (H1N1) 2009

    Molecular diagnosis of hereditary spherocytosis by multi-gene target sequencing in Korea: matching with osmotic fragility test and presence of spherocyte

    Get PDF
    Background Current diagnostic tests for hereditary spherocytosis (HS) focus on the detection of hemolysis or indirectly assessing defects of membrane protein, whereas direct methods to detect protein defects are complicated and difficult to implement. In the present study, we investigated the patterns of genetic variation associated with HS among patients clinically diagnosed with HS. Methods Multi-gene targeted sequencing of 43 genes (17 RBC membrane protein-encoding genes, 20 RBC enzyme-encoding genes, and six additional genes for the differential diagnosis) was performed using the Illumina HiSeq platform. Results Among 59 patients with HS, 50 (84.7%) had one or more significant variants in a RBC membrane protein-encoding genes. A total of 54 significant variants including 46 novel mutations were detected in six RBC membrane protein-encoding genes, with the highest number of variants found in SPTB (n = 28), and followed by ANK1 (n = 19), SLC4A1 (n = 3), SPTA1 (n = 2), EPB41 (n = 1), and EPB42 (n = 1). Concurrent mutations of genes encoding RBC enzymes (ALDOB, GAPDH, and GSR) were detected in three patients. UGT1A1 mutations were present in 24 patients (40.7%). Positive rate of osmotic fragility test was 86.8% among patients harboring HS-related gene mutations. Conclusions This constitutes the first large-scaled genetic study of Korean patients with HS. We demonstrated that multi-gene target sequencing is sensitive and feasible that can be used as a powerful tool for diagnosing HS. Considering the discrepancies of clinical and molecular diagnoses of HS, our findings suggest that molecular genetic analysis is required for accurate diagnosis of HS.Support was provided by: the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2A1A17069780) http://www.nrf.re.kr/

    Significant changes in synovial fluid microRNAs after high tibial osteotomy in medial compartmental knee osteoarthritis: Identification of potential prognostic biomarkers.

    No full text
    High tibial osteotomy (HTO) is a well-established treatment for medial compartmental knee osteoarthritis. Several microRNAs (miRNAs) are involved in osteoarthritis progression and are useful as osteoarthritis-related biomarkers. In this prospective study, we investigated differentially expressed microRNAs in the synovial fluid (SF) before and after HTO in patients with medial compartmental knee osteoarthritis to identify microRNAs that can be used as prognostic biomarkers. We used miRNA-PCR arrays to screen for miRNAs in SF samples obtained preoperatively and 6 months postoperatively from 6 patients with medial compartmental knee osteoarthritis who were treated with medial open wedge HTO. Differentially expressed miRNAs identified in the profiling stage were validated by real-time quantitative PCR in 22 other patients who had also been treated with HTO. All patients radiographically corresponded to Kellgren-Lawrence grade II or III with medial compartmental osteoarthritis. These patients were clinically assessed using a visual analogue scale and Western Ontario McMaster Universities scores. Mechanical axis changes were measured on standing anteroposterior radiographs of the lower limbs assessed preoperatively and at 6 months postoperatively. Among 84 miRNAs known to be involved in the inflammatory process, 14 were expressed in all SF specimens and 3 (miR-30a-5p, miR-29a-3p, and miR-30c-5p) were differentially expressed in the profiling stage. These 3 miRNAs, as well as 4 other miRNAs (miR-378a-5p, miR-140-3p, miR-23a-3p, miR-27b-3p), are related to osteoarthritis progression. These results were validated in the SF from 22 patients. Clinical and radiological outcomes improved after HTO in all patients, and only 2 miRNAs (miR-30c-5p and miR-23a-3p) were significantly differentially expressed between preoperative and postoperative 6-month SF samples (p = 0.006 and 0.007, respectively). Of these two miRNAs, miR-30c-5p correlated with postoperative pain relief. This study provides potential prognostic miRNAs after HTO and further investigations should be considered to determine clinical implications of these miRNAs
    corecore